- éléments conjugués
- сущ.
тех. сопряжённые элементы (детерминанта)
Французско-русский универсальный словарь. 2013.
Французско-русский универсальный словарь. 2013.
Décomposition en éléments simples — En algèbre, la décomposition en fractions partielles ou en éléments simples d une fraction rationnelle est son expression sous une somme de fractions ayant pour dénominateurs des puissances de polynômes irréductibles et pour numérateurs un… … Wikipédia en Français
Décomposer en éléments simples — Décomposition en éléments simples En algèbre, la décomposition en fractions partielles ou en éléments simples d une fonction rationnelle est son expression sous une somme de fractions ayant pour dénominateurs des puissances de polynômes… … Wikipédia en Français
GROUPES (mathématiques) - Généralités — On se propose de présenter ici les notions fondamentales de théorie des groupes qui interviendront constamment dans la suite des articles qui traitent des groupes. Ces articles contiennent un très grand nombre d’exemples, c’est pourquoi cet… … Encyclopédie Universelle
CORPS (mathématiques) — La structure de corps n’est en fait qu’un cas particulier de la structure plus générale d’anneau [cf. ANNEAUX ET ALGÈBRES]; en plus des axiomes généraux, on stipule que le groupe multiplicatif des éléments inversibles est le complémentaire de 0.… … Encyclopédie Universelle
Fonction Centrale D'un Groupe Fini — En mathématiques et plus précisément en théorie des groupes une fonction centrale est une fonction définie sur un groupe et constante sur chaque classe de conjugaison. Les fonctions centrales possèdent un rôle particulier dans le cadre de la… … Wikipédia en Français
Fonction centrale d'un groupe fini — En mathématiques et plus précisément en théorie des groupes une fonction centrale est une fonction définie sur un groupe et constante sur chaque classe de conjugaison. Les fonctions centrales possèdent un rôle particulier dans le cadre de la… … Wikipédia en Français
Nombre de Pisot-Vijayaraghavan — En mathématiques, un nombre de Pisot Vijayaraghavan est un entier algébrique réel strictement supérieur à 1, dont tous les éléments conjugués (en) ont un module strictement inférieur à 1. Par exemple, le nombre entier quadratique , où a et b … Wikipédia en Français
Ordre (théorie des groupes) — Ne doit pas être confondu avec Groupe ordonné. En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L ordre d un groupe est son nombre d éléments si ce groupe est fini, et l … Wikipédia en Français
Ordre (theorie des groupes) — Ordre (théorie des groupes) Pour les articles homonymes, voir ordre. En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L ordre d un groupe est son cardinal, i.e. le nombre de… … Wikipédia en Français
Ordre d'un groupe — Ordre (théorie des groupes) Pour les articles homonymes, voir ordre. En théorie des groupes, une branche des mathématiques, le terme ordre est utilisé dans deux sens intimement liés : L ordre d un groupe est son cardinal, i.e. le nombre de… … Wikipédia en Français
Caractere d'une representation d'un groupe fini — Caractère d une représentation d un groupe fini Fichier:Ferdinand Georg Frobenius.jpg Ferdinand Georg Frobenius fondateur de la théorie des caractères En mathématiques le caractère d une représentation d un groupes finis est un outil utilisé pour … Wikipédia en Français